The Infrared Spectrograph on Spitzer

L. Armus
& the IRS team
Spitzer Science Center, Cornell University, Ball Aerospace, University of Rochester, NASA Ames
Infrared Spectrograph (IRS)

PI = Jim Houck, Cornell University
Contractor = Ball Aerospace

Key Features
- Uses 128x128 Boeing Si:As and Si:Sb arrays
- No moving parts
- Two, R~650 echelle modules (10–19.5, 19.3–37 μm)
- Two, R~80 longslit modules (5.3–14.2, 14.2–40 μm)
- Peak-up imaging (13.3–18.7 and 18.5–26 μm)

 Acquisition of sources with poorly known positions over the 1–350 mJy flux density range. Peak-up on the science target or a nearby offset star whose relative position is accurately known.

- The IRS operates in staring or spectral mapping modes.
- All data arrives in sample up the ramp mode and is fit on the ground.
The IRS on the MIC Baseplate
Basic IRS Capabilities

<table>
<thead>
<tr>
<th>Module</th>
<th>Array Format (pixels)</th>
<th>Pixel Size (arcsec)</th>
<th>λ (µm)</th>
<th>Resolution</th>
<th>Slit size (arcsec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Low</td>
<td>128 x 128</td>
<td>1.8</td>
<td>5.2 – 14.5</td>
<td>64 – 128</td>
<td>3.6x57(x2)</td>
</tr>
<tr>
<td>Long Low</td>
<td>128 x 128</td>
<td>5.1</td>
<td>14.0 – 38.0</td>
<td>64 – 128</td>
<td>10.5x168(x2)</td>
</tr>
<tr>
<td>Short High</td>
<td>128 x 128</td>
<td>2.3</td>
<td>9.9 – 19.6</td>
<td>600</td>
<td>5x11</td>
</tr>
<tr>
<td>Long High</td>
<td>128 x 128</td>
<td>4.5</td>
<td>18.7 – 37.2</td>
<td>600</td>
<td>11x22</td>
</tr>
</tbody>
</table>

Sensitivity Levels (point source 5σ, 500 seconds)
- **Low Res:** ~ 0.5-1 mJy @ 10 µm
- **High Res:** ~ 3-5x10^-18 W m^-2 @ 15 µm
- **Peakup:** ~ 0.5 mJy

Saturation Limits (point & extended sources)
- **Low Res:** ~ 5 Jy @ 10 µm (6 seconds)
 - *or* ~ 0.4 Jy arcsec^-2
- **High Res:** ~ 50 Jy @ 15 µm (6 seconds)
 - *or* ~ 2.1 Jy arcsec^-2
- **Peakup:** ~ 0.5 Jy (4 seconds)
 - *or* ~ 40 mJy arcsec^-2
IRS Wavelength Coverage

The 2.5 to 45 micron spectrum of the Circinus galaxy
Basic IRS Science

Spectroscopic observations of previously known sources (IRAS, ISO, 2MASS, etc.) and those discovered with Spitzer.

extragalactic examples

- the physical conditions of the atomic/molecular gas in dusty galaxies via emission/absorption lines.
- the redshifts of optically obscured, distant galaxies.

The IRS will enable spectroscopy at levels that are \(\sim 100 \) times more sensitive than those reached by ISO
Early IRS Results

Low redshift active galaxies
- Three Ultraluminous Infrared Galaxies (ULIRGs): Mrk 1014, Mrk 463, and UGC 5101.

Low metallicity starburst galaxy
- The Blue Compact Dwarf (BCD) SBSS 0335-052.

High redshift QSO
- The $z = 3.91$ lensed QSO APM 08279+5255.
ULIRG Basics

Properties
- \(L_{\text{IR}} \geq 10^{12} L_\odot \); \(L_{\text{bol}} \sim L_{\text{IR}} \); \(L_{\text{opt}} < 0.1 L_{\text{IR}} \)
- 90 – 95% are interacting or in merging systems
- very strong OIR emission lines (atomic, molecular, PAH)
- NIR stellar CO absorption from young stars
- large, compact reservoirs of molecular gas (\(> 10^9 - 10^{10} \ M_\odot \) over \(\leq 1 \) Kpc) in their nuclei
- drive “superwinds” of hot, enriched gas into the IGM
- rare in the local Universe - only \(\sim 3\% \) of galaxies in BGS
- Fraction of AGN appears to rise from 20 – 25% at \(L < 2 \times 10^{12} L_\odot \) to \(\sim 35 – 50\% \) at \(L > 2 – 6 \times 10^{12} L_\odot \).

What Powers most ULIRG’s ??

A **starburst** (SFR \(\sim 50 – 500 \ M_\odot \text{yr}^{-1} \)), an **AGN**

……... or both ?
Rest Frame Mid-IR Spectroscopy

Clear benefits of MIR spectroscopy for ULIRG studies

- The extinction is much lower ($A_{15} \sim 0.025 \ A_V$)
- Atomic, fine-structure lines (e.g. [NeV] or [OIV]) can be effective diagnostics of the radiation field.
 - The ionization potential of [NeIV] is 97 eV. In an integrated galactic spectrum this line indicates the presence of an AGN.
- Aromatic features (PAHs) are abundant.
 - Typically very strong in starbursts, but weak in AGN.
- Pure rotational H_2 lines are available as warm gas probes.
Key Mid-IR diagnostic features

<table>
<thead>
<tr>
<th>Line</th>
<th>λ_{rest} (eV)</th>
<th>Ion Pot. (eV)</th>
<th>Z_{in}</th>
<th>Z_{out}</th>
<th>Z_{in}</th>
<th>Z_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeVI</td>
<td>7.6</td>
<td>126</td>
<td>0.31</td>
<td>1.61</td>
<td>1.61</td>
<td>3.97</td>
</tr>
<tr>
<td>SIV</td>
<td>10.5</td>
<td>35</td>
<td>0</td>
<td>0.90</td>
<td>0.90</td>
<td>2.62</td>
</tr>
<tr>
<td>NeII</td>
<td>12.8</td>
<td>22</td>
<td>0</td>
<td>0.52</td>
<td>0.52</td>
<td>1.97</td>
</tr>
<tr>
<td>NeV</td>
<td>14.3</td>
<td>97</td>
<td>0</td>
<td>0.36</td>
<td>0.36</td>
<td>1.66</td>
</tr>
<tr>
<td>NeIII</td>
<td>15.6</td>
<td>41</td>
<td>0</td>
<td>0.25</td>
<td>0.25</td>
<td>1.44</td>
</tr>
<tr>
<td>SIII</td>
<td>18.7</td>
<td>23</td>
<td>0</td>
<td>0.04</td>
<td>0.04</td>
<td>1.03</td>
</tr>
<tr>
<td>NeV</td>
<td>24.3</td>
<td>97</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.57</td>
</tr>
<tr>
<td>OIV</td>
<td>25.9</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.47</td>
</tr>
<tr>
<td>SIII</td>
<td>33.5</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.13</td>
</tr>
<tr>
<td>SII</td>
<td>34.8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.09</td>
</tr>
</tbody>
</table>
The IRS ULIRG Program

A Sampling of ULIRGs

- 110 ULIRGs chosen predominantly from the BGS, 1 Jy, 2Jy, and FIRST/IRAS samples*
- \(0.04 < S_{25} < 8.66\) and \(0.14 < S_{60} < 103.33\) Jy
- \(0.02 < z < 0.93\)
- \(11.7 < \log L_{\text{FIR}} (L_\odot) < 13.1\)
- mix of warm \(S_{25} / S_{60} > 0.2\) and cold FIR sources
- the total time for the program, including overheads, is \(~82\) hours.

We will observe all **110 with SL and LL (R~80)**
and **56 with SH and LH (R~650)**

IRS ULIRG Spectroscopy

We observed three ULIRGs in SV, IRS-2, IRS-5

- **Mrk 1014** (z=0.163; \(L_{\text{IR}} \sim 4.2 \times 10^{12} L_\odot\))
 - Radio quiet, broad-line, dusty QSO with twin tidal tails.

- **Mrk 463** (z=0.051; \(L_{\text{IR}} \sim 6.4 \times 10^{11} L_\odot\))
 - Merging, twin Seyfert 2 nuclei. Mrk 463e dominates in IR.

- **UGC 5101** (z=0.039; \(L_{\text{IR}} \sim 9.5 \times 10^{11} L_\odot\))
 - Post-merger, LINER nucleus with a circum-nuclear starburst.
 - XMM and Chandra data suggest a buried AGN behind \(N_H \sim 10^{24} \text{ cm}^{-2}\).

Integration Times

- **Mrk 1014**: SL ~ 170s, LL ~ 240s, SH ~ 360s, LH ~ 480s
- **Mrk 463**: SL ~ 170s, LL ~ 170s, SH ~ 360s, LH ~ 480s
- **UGC 5101**: SL ~ 170s, LL ~ 240s, SH ~ 60s, LH ~ 120s
• No silicate absorption in Mrk 1014, yet obvious PAH emission.

• Silicate abs. toward Mrk 463e but no PAH.

• Strong silicates and PAH in UGC 5101. Continuum fit to UGC 5101 suggests $A_V > 15-35$ mag toward nucleus.

• Water ice and hydrocarbon absorption at 5-7.5 µm in UGC 5101. Water ice greatly affects apparent 6.2 µm PAH strength.

• 16.4 µm PAH detected in UGC 5101
PHT-S spectra
Rigopoulou, et al. 1999

June 04
[NeV], [NeII], PAH, and [OIV] line flux ratios in Mrk 1014 and Mrk 463e suggest 80-90% of energy from AGN.

First detection of [NeV] in UGC 5101. Line ratios suggest < 10% of energy from buried AGN. (Sturm, et al. 2002)

H$_2$ 9.66 and 17.0 µm rotational lines suggest large warm (300-400K) molecular gas reservoirs in UGC 5101 and Mrk 463.

Two, 30sec integrations
• Strong [NeV] and [OIV] in Mrk 1014 and Mrk 463.

• Weak detection of [OIV] in UGC 5101. [NeIII]/[NeII] line ratio at high end of starburst range, close to WR galaxies. (Verma et al. 2003)

• [SIII] 18.7/33.4 flux ratio consistent with ionized gas in low density limit ($n_e < 10^2$ cm$^{-3}$)
Properties

- $z = 0.0136; \ S_{25} \sim 0.06 \ Jy$
- Blue Compact Dwarf (BCD) with $Z \sim Z_\odot / 41$
 - In a class with IZw 18 which has $Z \sim Z_\odot / 50$
- Six regions of massive star formation – five visible and one obscured. All six are within a region of $\sim 500 \ pc$.
- $L_{\text{bol}} \sim 10^9 \ L_\odot$ - about 75% emitted in the mid-IR.

- **Use the IRS to study the MIR properties of the dust and gas in a sample of 20, low-metallicity BCDs. Are these analogs to high-redshift, star-forming galaxies??**

IRS Observations: Feb 2004
SL = 28 mins, LL = 14 mins

Visible HII regions
$Z \sim Z_\odot/41$

Buried HII region
(17 pc diameter)
(Age $\sim 5 \times 10^6$ yr)

Cool Dust & HI

SNe shell

~ 1 kpc
(4 arcsec)

June 04 – Beyond Spitzer

Red Peak-up

PAH

Gemini

Extrapolated from 1.5GHz flux

$S_{60} < 165$ mJy

IRS Spectra of SBS0335-052 & NGC7714

Extrapolated from 1.5GHz flux

IRS Spectra of SBS0335-052 & NGC7714
SBS 0335-052

IRS Results

- The spectrum shows silicate absorption ($A_{9.7} > 0.5$ mag) but no PAH emission.

- The spectrum peaks at $\lambda \sim 28 \mu$m. A two temp. BB fit (65 and 150K) implies a much smaller mass of cold dust than estimated from the ISO data (1.5 vs. $6 \times 10^3 M_\odot$). The Plante & Sauvage detection of 112 mJy at 65 μm seems inconsistent with the IRS spectrum by more than 2x.

- [SIV] 10.51 and [NeIII] 15.55 are clearly detected. The [SIV] / [SIII] and [NeIII] / [NeII] line flux ratios indicate a hard radiation field ($T_{\text{eff}} > 4 \times 10^4$ K).

- Using the free-free 5GHz radio flux from Hunt, et al. (2004) and the He abundance from Izotov (1997), the MIR lines imply abundances which are higher (by 2-5x) than the optical values. The imbedded SC may be more enriched.
APM 08279+5255

Properties

- $z = 3.91; S_{25} \sim 0.2$ Jy
- $L_{\text{bol}} \sim 5 \times 10^{13} L_\odot$ (after correcting for a magnification of ~ 100)
- Detected in mm, sub-mm and CO ($1-10 \times 10^9 M_\odot$)
- FIR, sub-mm SED well fit by BB with $T \sim 220$ K

Since the QSO is gas and dust rich, can we use the IRS to measure the 3.3 and 6.2 PAH emission features or organic absorption features (e.g. water or hydrocarbons) and compare to low-z AGN and ULIRGs??

IRS Observations: Oct, Nov 2003
SL = 112 sec, LL = 168sec

IRS BPU

Lewis et al. 1998

APM 08279+5255

IRS Results

- The spectrum is very smooth with $f_\nu \sim \nu^{-1.2}$ for $\lambda_{\text{rest}} > 2.9$ μm, steepening to $f_\nu \sim \nu^{-2.3}$ for $\lambda_{\text{rest}} < 2.9$ μm. This is consistent with a decrease in very hot ($T > 1000$K) dust perhaps from sublimation of silicate grains in the inner accretion disk.

- No 3.3 or 6.2 PAH emission is detected. The rest-frame EQW of the 6.2 PAH line is < 0.006 μm. This is less than 1/43 (1/8) that seen in the IRS spectra of the ULIRGs UGC 5101 (Mrk 1014).

- Redshifted P-β and P-α are detected, but $P-\alpha / P-\beta \sim 1.05 +/- 0.2$, which is less than case B (2.0) and high density models (1.8) of the BLR (e.g. Drake and Ulrich 1980; Lynch et al. 2000).

- The P-β and P-α lines are resolved in low-res, and have FWHM ~ 9000 km s$^{-1}$.

There are hundreds of low-z and luminous high-z sources that can be measured with the IRS to determine energy sources, dust temperatures, compositions, warm molecular gas masses, etc.

Most of these sources are already known (e.g. ULIRGs, BCDs, unusual IRAS sources), or will be found in various Spitzer GTO and Legacy surveys (e.g. FLS, SWIRE).

...However,

- the majority of the sources found with Spitzer (even in the shallow surveys), especially those at $z > 2$ (where the luminous optical QSOs and the sub-mm sources peak), will be very difficult to study with the IRS. Broad band techniques (e.g. IRAC-MIPS colors) must be used until future spectroscopic missions are available.
- Spitzer detections will be biased (at many redshifts) to warm dust sources (AGN).
- The dust obscuration in many sources (e.g. some ULIRGs) is so high ($N_H > 10^{23} - 10^{24}$ or $A_V >> 100$ mag) that even the MIR cannot penetrate to the nucleus.
There should be ~20000 sources in the MIPS shallow and SWIRE surveys with \(z > 2 \) and \(S_{24} > 0.2-0.3 \text{ mJy} \) (the 5\(\sigma \) survey limits).

About 1\% of these (~200) are observable with IRS low-res in \(\sim 0.3-0.5 \text{ hr/order} \) (~1-2 hrs for a full SL+LL spectrum).
Can IRS Measure the Sub-mm Population?

Normalized at 850 µm to match bright SCUBA sample.

Cool source has $L_{\text{IR}} \sim 5 \times 10^{12} L_\odot$ and $S_{24} \sim 0.2-0.3$ mJy

Would take ~3 hrs (per order) to get a 5σ detection with the IRS.
Beyond the IRS

Sensitive, long wavelength spectroscopic missions will be needed to explore the densest environments at low redshifts, as well as star-forming galaxies at high redshifts that have luminosities well below $10^{12-13} \, L_\odot$. The Spitzer IRAC and MIPS Legacy and GTO surveys will lay the groundwork for these missions.