Science Drivers for the SPICA Mission:
Extrasolar Planets and their Formation

Motohide Tamura1, Takao Nakagawa2, Hirokazu Kataza2, Hiroshi Shibai3, Toshio Matsumoto2, and Hideo Matsuhara2

(Email: hide@subaru.naoj.org)

1National Astronomical Observatory of Japan
2Institute of Space and Astronautical Science (ISAS),
Japan Aerospace Exploration Agency (JAXA),
Yoshinodai, Sagamihara, Kanagawa, Japan
3Nagoya University, Nagoya, Japan

It is needless to say that the detection and characterization of extrasolar planets is one of the most important topics of any future optical-IR observatories. The SPICA is the space mission to launch a 3.5-m diameter, cooled, single-mirror telescope working at mid- and far-infrared wavelengths. Although the spatial resolutions are not high enough to resolve the planets discovered by the radial velocity measurements, the high sensitivity of the SPICA is a powerful tool to conduct imaging and spectroscopy of possible planets and companion brown dwarfs relatively away from the central star. This potential will be enhanced if a coronagraphic instrument is equipped for SPICA, which takes advantages of its non-segmented large primary mirror. Direct observations of the formation site of such planets, protoplanetary disks, also merit from such a capability. In this contribution, we will describe the SPICA coronagraph instrument and its various scientific applications for studies on extrasolar planet, brown dwarf studies, and planet formation.