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Instrument Design Drivers

• Photometer
- Deep mapping with highest efficiency and largest possible field of view 

- Multi-band coverage with simultaneous observation 
- Point and compact source observation with high efficiency

• Spectrometer
- Sensitivity optimised for point/compact source spectroscopy
- Imaging spectroscopy with maximum available field of view
- Wide wavelength coverage
- Variable spectral resolution (few x 10 to few x 100)

• Both
- Thermal background dominated by the Herschel telescope
- Simplicity, affordability, reliability, ease of operation 
- Complementary to other Herschel instruments and other facilities
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Instrument Summary
• 3-band imaging photometer

- 250, 360, 520 µm  (simultaneous)
- λ/∆λ ~ 3
- 4 x 8 arcminute field of view
- Diffraction limited beams (17, 24, 35”) 

• Imaging FTS
- 200 - 670 µm 
- 2.6 arcminute field of view
- ∆σ =  0.4 cm-1 (goal 0.04 cm-1)

(λ/∆λ ~ 20 - 100 (1000) at 250 µm)

• Design features
- Sensitivity limited by thermal emission 

from the telescope  (80 K; ε = 4%)
- 3He cooled detector arrays (0.3 K)
- Feedhorn-coupled spider web NTD bolometers
- Minimal use of mechanisms 

- Beam steering mirror, FTS mirror drive
- No on-board data processing
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SPIRE Block Diagram
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Photometer Layout and Optics
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Photometer Implementation
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Photometer Alignment
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Photometer Alignment Result
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FTS Layout and Optics
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Spectrometer Implementation
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Spectrometer Alignment Results
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FTS Mechanism

• Double parallelogram carriage 
with toothless gear

• Moiré fringe position measurement
system (0.01 µm accuracy) 

• -0.3  +3.5 cm movement 

• Continuous scan or step-and-
integrate operation
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(Lionel’s wonderful) 3He Cooler

• Cold stage temp. 
< 280 mK

• Hold time > 46 hrs
• Cycle time < 2 hrs
• Average load on 

4He tank < 3 mW
• Heat lift provided to

detector arrays > 10 µW
• Gas-gap heat switches

(no moving parts) 

Evaporator 
(0.3 K)

Gas-gap 
heat switchKevlar 

suspension

Sorption 
pump

CQM cooler

Pumping 
line
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Photometer Thermal Source
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Detector Arrays (2Fλ Feedhorns)

Photometer Spectrometer
PLW

43 detectors
PMW

88 detectors
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139 detectors
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19 detectors

45 
mm
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37 detectors22 mm

⇒ Coincident beam centres
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NTD Ge Bolometer Arrays
NTD Ge
thermometer

Spider-web 
absorbing grid

• NEP ~ 3 x 10-17 W Hz-1/2

• 120-K Si JFET readout
• 1/f noise knee < 100 mHz
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CQM Bolometer Array Module

2-K stage and 
interface to 

SPIRE 2-K box

300-mK 
stage

Filter covering 
feedhorn array

Connection 
to 3He fridge

Kevlar
suspension
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Observing Speed vs. Telescope
Background Power (350 µm)
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Example Prototype Filtering Scheme 
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Filter Out-of-Band Rejection

1.00E-25

1.00E-23

1.00E-21

1.00E-19

1.00E-17

1.00E-15

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

10 100 1000 10000 100000

Wavenumber [cm-1]

Tr
an

sm
is

si
on

10,000 100,000

Wavenumber  cm-1
1,00010010

10-3

10-7

10-19

10-11

10-15

1

10-23

Tr
an

sm
is

si
on

Requirement



SPIRE
Bruce Swinyard

25Beyond Herschel and Spitzer
June 2004

SSTD
Rutherford Appleton 
Laboratory

Test facility has an external spectrometer
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Measured CQM Response
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Measured Optical Efficiency of CQM Array
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Electronics
• We need low noise amplifiers 

to exploit inherent stability of 
detectors 10 mHz 5 Hz

Shorted inputs

Dark detectors
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Sky Sampling with Feedhorn Arrays

Full sampling of the image require scanning or  “jiggling” of 
the telescope pointing

Beam FWHM ≈ λ/D

Beam separation ≈ 2λ/D

16 pointings needed for 
fully-sampled image

FWHM beams on the 
sky don’t overlap

Feedhorns adjacent
in the focal plane
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Point Source Photometry

X

Y

Z

A

B

• Telescope pointing fixed

• Chopping in Y-direction
between A and B (126”)

• Simultaneous observation 
in the three bands with two
sets of co-aligned detectors

• This is OK if the pointing is
accurate enough (~ 1.5”)
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7-point Jiggle Map

θ

• Chopping 126” 

• 7-point jiggle pattern

• Angular step θ ~ 4 - 6 arcseconds
(> pointing or positional error)

• Total flux and position can be fitted

• Compared to single accurately
pointed observation, S/N for 
same total  integration time is 
only degraded by

~ 20%  at 250 µm 
~ 13%  at 350 µm 
~ 6%  at 500 µm 
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Field (Jiggle) Mapping 

• Telescope pointing fixed 
or in raster mode 

• Chopping up to 4 arcmin
amplitude in Y direction 

• 64-point “jiggle” pattern 
for full spatial sampling

• Available fov = 4 x 4 arcmin

X

Y

Z

± 2 arcmin
maximum.
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Scan Mapping

• Telescope in line scanning
mode 

• Scan rate ~ 20-30”/sec – max 
60”/sec

• Map of large area is built up 
from overlapping parallel
scans

• Most efficient mode for 
large-area surveys

Scan directions for 
instantaneous full sampling

14.036 degrees 
from “vertical”

50.194 degrees 
from “vertical”

74.0546 degrees 
from “vertical”
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FTS Observing Modes
• ∆σ = 0.04  - 2 cm-1 by adjusting scan length

• Continuous scan:
- Mirror scan rate = 0.5 mm s-1

- Signal frequency range = 3 - 10 Hz
- Calibrator in 2nd port nulls telescope background

• Step-and-integrate:
- 2nd port calibrator is off 
- Mirror stepped with integration at each position
- Beam Steering Mechanism chops on sky

• Point source spectroscopy/spectrophotometry
- Telescope pointing fixed
- Background characterised by adjacent pixels

• Imaging spectroscopy
- Beam steering mirror adjusts pointing between 

scans to acquire fully-sampled spectral image
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FTS Mapping simulation
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Sensitivity Estimates: Photometer
New sensitivities taking into account increased obscuration of 
telescope and lower estimate of detector sensitivity

Band  (µm)  250 360 520 
Point source (7-point) 2.7 3.5 4.2 

4’ x 4’ jiggle map 10 12 13 ∆S(5-σ; 1-hr)  mJy
   

4’ x 8’ scan map 7.6 9.2 11 

Time (days) to map  
1 deg.2 to 3 mJy 1-σ 

Nominal case 2.1 3.0 3.9 
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Sensitivity Estimates: Spectrometer

Low-resolution spectrophotometry ∆σ = 1 cm-1 
λ            µm 200 - 315 315 - 500 500-670 

∆S (5-σ; 1-hr)  Point source 200 180 180 - 260

(mJy) Fully-sampled 
2.6’ map 

530 490 490 - 690

 

Line spectroscopy ∆σ = 0.04 cm-1 
λ   µm   200 - 315 315 - 500 500-670 

Point source 5.9 5.5 5.5 - 7.7 ∆F (5-σ; 1-hr)  
W m-2 x 10-17 

Fully-sampled 
2.6’ map 

20 18 18 - 26 
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See also posters on…
• First results from SPIRE CQM testing (Lim et al)
• Thermal design of the SPIRE instrument (Goizel and 

Griffin)
• Hi-Gal survey – proposed FIR/Sub-mm survey of the 

galactic plane to |l|<2.5 deg (Babar et al)
• SPIRE ICC – how the data and observations will be 

handled (Clements et al)

• Effects of thermal fluctuations on Planck HFI 
sensitivity (Fereday)



SPIRE
Bruce Swinyard

39Beyond Herschel and Spitzer
June 2004

SSTD
Rutherford Appleton 
Laboratory



SPIRE
Bruce Swinyard

40Beyond Herschel and Spitzer
June 2004

SSTD
Rutherford Appleton 
Laboratory

Some Key Programmes Involving SPIRE

• SPIRE + PACS photometry and spectroscopy of galaxies
- Detailed SEDs and dust properties
- Metallicity variation and evolution
- AGN vs. starburst 
- Testing unified schemes
- Templates for high-redshift 

studies

IC10 (D ~ 1Mpc)
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Some Key Programmes Involving SPIRE
• SPIRE + PACS extragalactic surveys (deep, medium, shallow)

- Unbiased survey of high-z dusty star-forming galaxies missed by 
optical and near-IR survey

- Detection of  many thousands of galaxies
- Test models of number counts galaxy spectra, luminosity, and SF 

history out to z = 5
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- Large-scale structure in 
the high-redshift universe

- Follow up spectroscopic 
observations: redshifts, 
physics and chemical 
evolution
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Some Key Programmes Involving SPIRE

• SPIRE + PACS survey of nearby molecular clouds
- Complete samples of protostars and pre-collapse condensations 

down to Mproto ~ 0.03 M and d ~ 1 kpc
- Mass function down to brown dwarf mass regime
- SED coverage of spectral peak
- Accurate mass, luminosity, temperature
- Lifetimes of different evolutionary stages 
- Temperature and density profiles
- Initial conditions for collapse
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Some Key Programmes Involving SPIRE

MSX      6-25 µm     20” resolution

• Compete multi-band galactic 
plane survey to ~100 mJy     
rms
- Census of all observable 

galactic star forming regions 
- Wide range of masses and 

evolutionary stages 
- Triggered star formation
- Global properties of the ISM 

dust and molecular clouds
- Supernova remnants; PMS 

star mass ejection
- See poster by Ali et al.
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