

NASA Cryocooler Development Program Overview

R.G. Ross, Jr.

rgrossjr@ jpl.nasa.gov

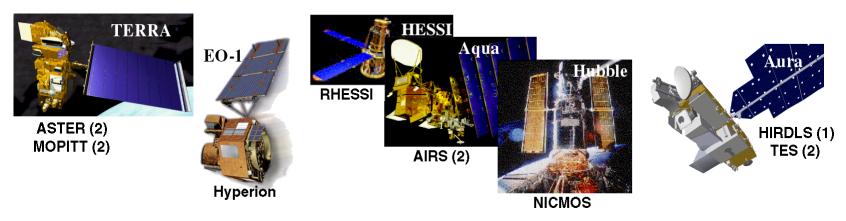
http://www.jpl.nasa.gov/adv_tech/coolers/summary.htm

June 7, 2004

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Topics

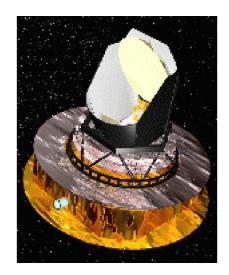
- Background
 - History of NASA cryocooler missions
 - Space cryocooler flight operating experience
- Planck sorption cooler
- DoD large capacity 35K/85K two-stage cryocoolers
- NASA ACTDP cryocooler development program
 - Objectives and Requirements
 - Contractors and Concepts
- Example application of ACTDP cryocoolers to 4-6 K cooling of a large space observatory
 - JWST/MIRI cryocooler integration concept
 - Cooling capacity versus temperature
 - Predicted in-space cooldown time for MIRI
- Summary

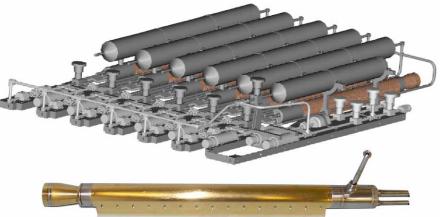

Background

- Cryocoolers are an enabling technology for many NASA space-science missions
- NASA first flew long-life cryocoolers on UARS in 1991 (British ISAMS instrument); this started the history of the very successful "Oxford cooler" designs

 NASA has now put nine more long-life coolers into flight service including four in 2002, and three more are scheduled for launch on the Aura spacecraft this month

Space Cryocooler Flight Operating Experience


Cooler / Mission	Runnin Hours		
Creare Turbo Brayton NICMOS Japanese Stirling	19,000	As of 5/04, Ongoing, No degrad.	
ASTER (2 units) NGST (TRW) Pulse Tubes	37,000	As of 5/04, Ongoing, No degrad.	
CX (Mini PT (2 units)) MTI (6020 10cc PT) Hyperion (Mini PT)	57,000 37,000 30,000	As of 5/04, Ongoing, No degrad. As of 5/04, Ongoing, No degrad. As of 5/04, Ongoing, No degrad.	
SABER (Mini PT) ´ AIRS (10cc PT (2 units))	24,000 18,000	As of 5/04, Ongoing, No degrad. As of 5/04, Ongoing, No degrad.	
Oxford/BAe/MMS/Astrium Stirling ISAMS (80 K Oxford) HTSSE-2 (80K BAe)	16,223 24,000	Near continuous 10/91 thru 7/92 Mission ended 3/02, No degrad.	
INTEGRAL (50-80K Astrium (4)) MOPITT (50-80K BAe (2 units))	13,000 37,000	As of 5/04, Ongoing, No degrad. As of 5/04, one displacer failed at 11,000 hours; other still running	
RAL 80K Integral Stirling ATSR 1 ATSR 2	42,000 ~74,000	Near continuous 7/91 thru 6/96 As of 5/04; launched 5/95; No deg	rad.
Sunpower Integral Stirling RHESSI	20,000	As of 5/04, Ongoing, No degrad.	aller



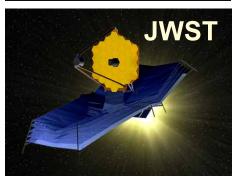
Planck Sorption Cooler

- Planck mission of the European Space Agency
 - Very high resolution mapping of temperature anisotropy in the CMB (2007 launch)
- Two JPL hydrogen sorption cryocoolers
 - Cool the LFI detectors to 18 - 20 K
 - Precool RAL 4 K helium J-T for HFI system
 - Deliver flight units in Nov.
 2004 and April 2005

Large SBIRS Cooler

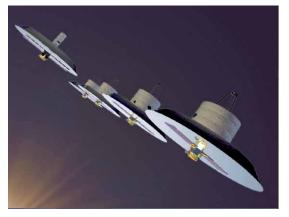
- DoD Missile Defense Agency missions desire large cooling capacities:
 - 2 W at 35 K ...plus
 - 20 W at 85 K
- Large "Oxford style" pulse tube cryocoolers have been developed at NGST and Lockheed Martin for this need with input power capacities up to 600 watts
- These large-capacity coolers provide near-flight-qualified hardware for future NASA missions to build upon

NGST (TRW) HCC 35K/85K 2-stage pulse tube cryocooler (14 kg, 600 W)


ACTDP Objective

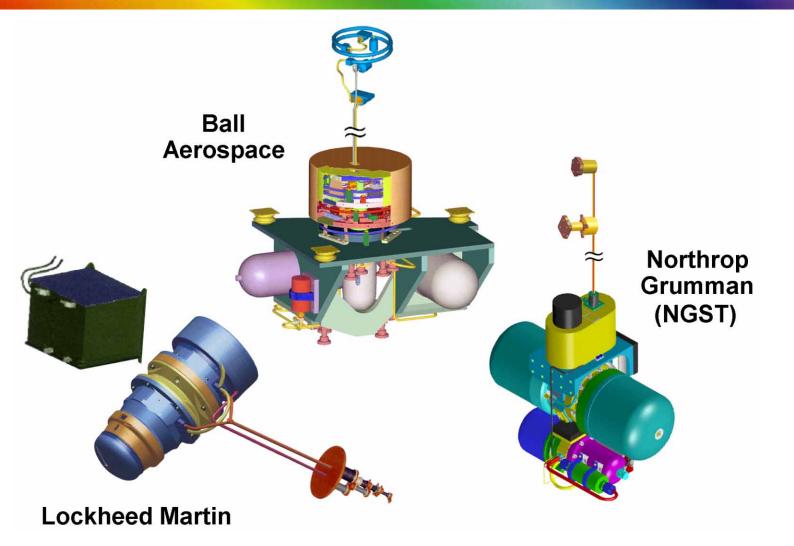
(Advanced Cryocooler Technology Development Program)

- Cryocooler development for next generation space-based observatories
 - 4-6 K / 18 K two-stage cooling
 - Remote coldheads (on deployable structures)
 - Minimal generated noise (EMI and Vibration)
- Three key missions have served as focus
 - Terrestrial Planet Finder
 - Constellation-X
 - James Web Space Telescope
- Designed to provide proven Development Model (DM) coolers in the 2006 timeframe

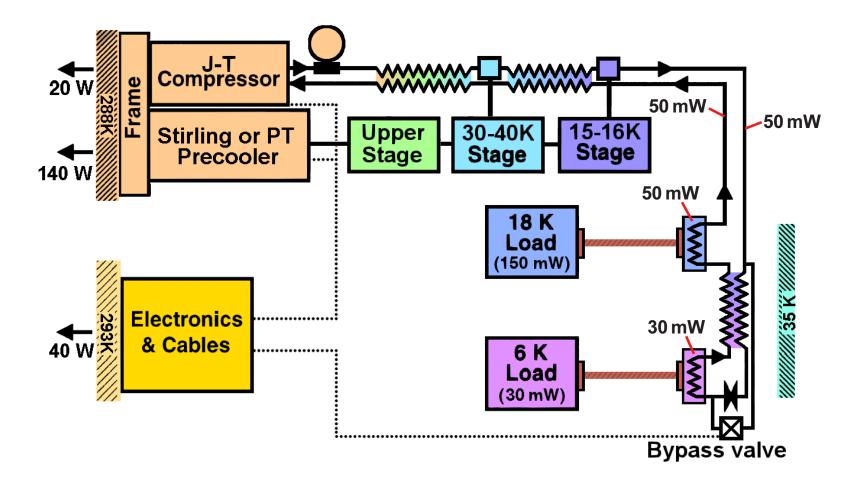


Consensus Top-level cooler requirements for TPF, JWST, and Con-X have been identified and reflected in a detailed ACTDP cryocooler specification. Key requirements include:

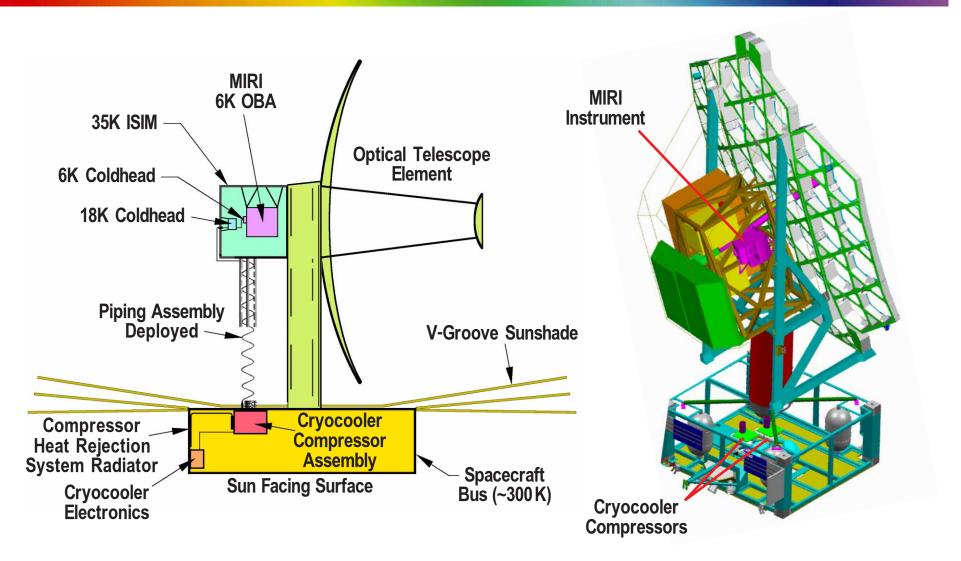
- 30 mW at 6 K plus 150 mW at 18 K
- <200 watts input power</p>
- < 40 kg cooler system mass</p>
- Accommodate 5 to 25 meter cold-end deployment length
- Low Generated Vibration and EMI, 10 year life


Con-X

TPF	
-----	--

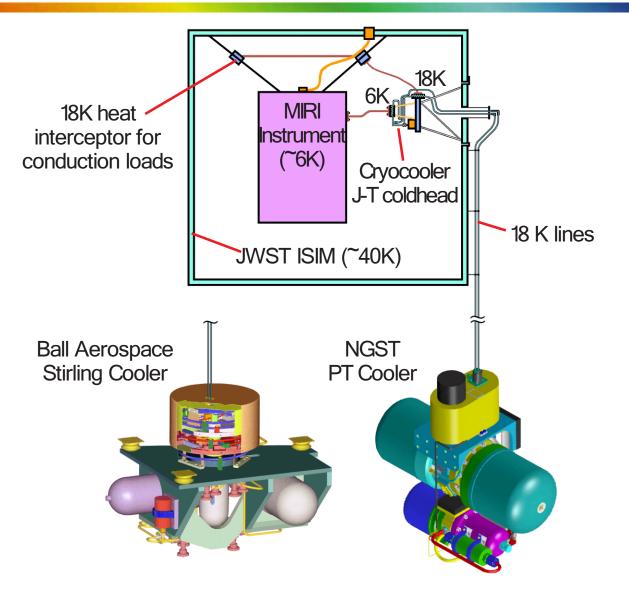

ACTDP Cryocooler Contractors and Concepts

ACTDP Hybrid J-T Cryocooler Thermal Flow Diagram

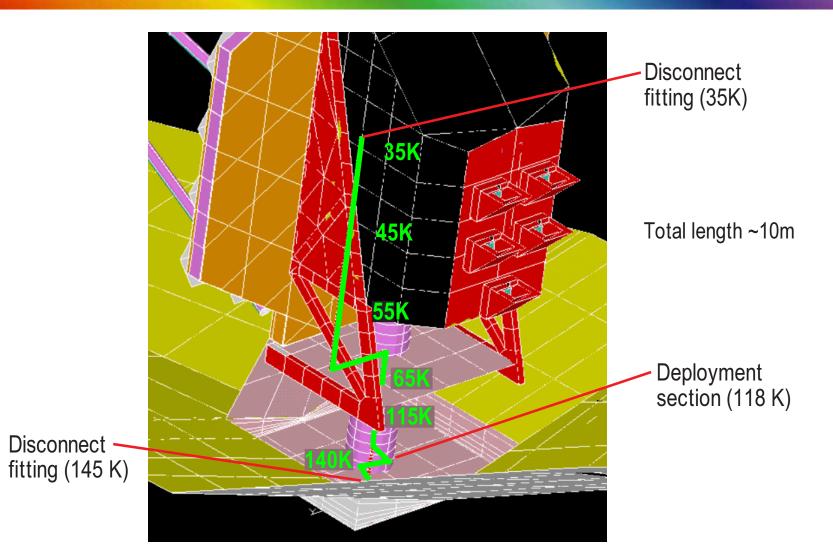


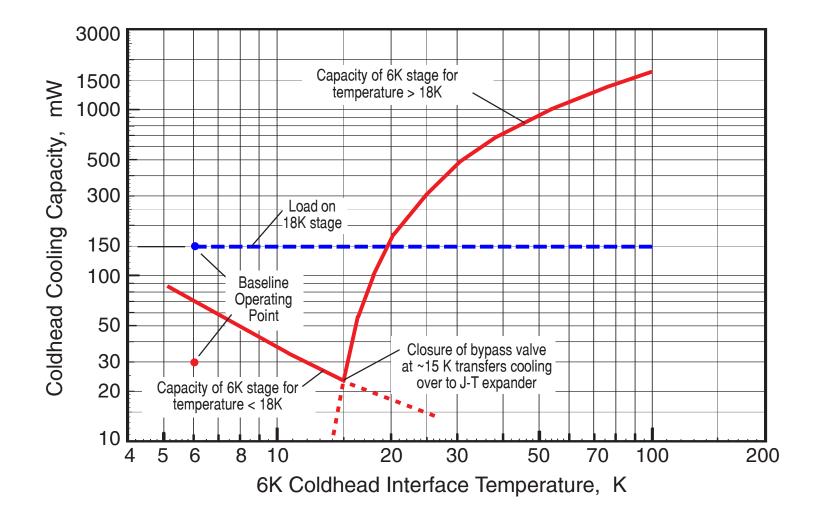
IPL

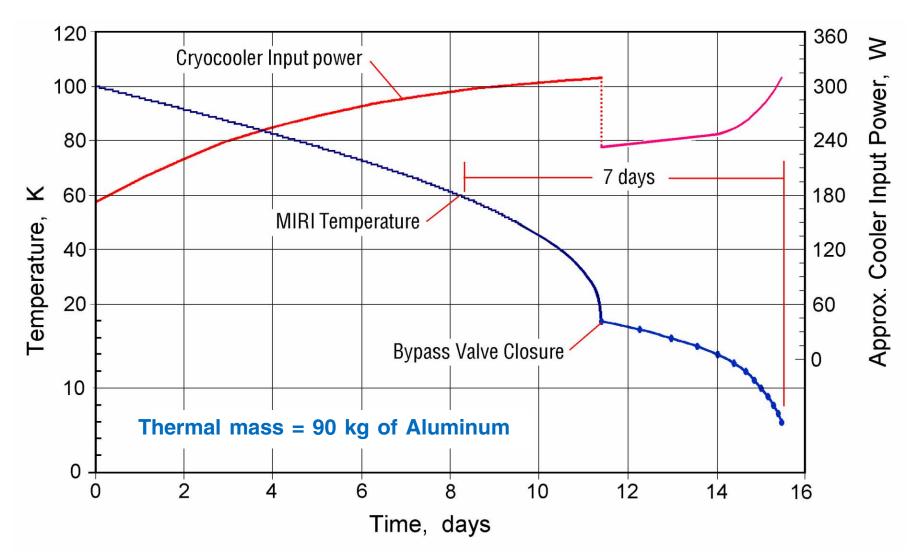
Example Cryocooler Application to James Webb Space Telescope



Example MIRI Instrument Cryocooler Integration Concept



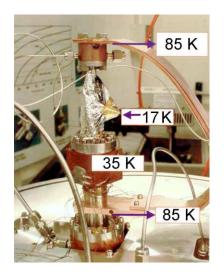

MIRI Cryocooler Piping Assembly Thermal Boundary Conditions


ACTDP Hybrid J-T Cryocooler Cooling Capacity vs Temperature

MIRI Cooldown vs Time Using an ACTDP Cryocooler

Milestone	CY02		CY03				}	CY04			Ļ	CY05			;	CY06			CY0)7	
	F٦	Y02	2		FY	′ 03	\$		F١	104	1		FY	05			FY	′ 06	;		FY	07	-
ACTDP Study Phase			ŴD	P	ÖR 																		
Preliminary Design																							
Demo Phase Transition																							
Mission Integ. Studies																							
ACTDP Demo Phase					AW	D		APC	R			TR			T	RR				PSF	2		
Design & Devel. Tests																							
Parts Proc. & Fab																							
Assembly & Integration														Ę									
Perf. and Char. Tests																							

DTR = Development Test Review TRR = Technology Readiness Review PSR = Pre-ship Review



Project Status

- Three teams were selected in January 2003 for Demo-Phase contracts and have completed detail designs at this point:
 - Ball Aerospace, Boulder Colorado
 - NGST (TRW), Redondo Beach, California
 - Lockheed Martin, Palo Alto, California
- Current effort is on design refinement and development testing at testbed level to achieve efficiency and life goals
- Development Test Review scheduled for this summer and Technology Readiness Review is scheduled for summer 2005.
- Assembly and test of complete Development Model coolers at systems level is scheduled for completion by summer 2006

Summary

- Space cryocoolers have reached a high level of maturity
 - Life times in excess of 10 years in ground tests
 - Over 20 coolers operating in space with multi-year lifetimes
 - Two more cooler missions are scheduled for launch this summer
- Present NASA development emphasis is on 4-6K / 18K coolers to enable the use of low-temperature detectors and optics with future multi-year observatory missions; the coolers are being developed as part of the Advanced Cryocooler Technology Development Program (ACTDP)
- Development Models of these new ACTDP coolers are currently in the detailed design and test phase as part of the TPF project; system-level demonstrations of these DM cryocoolers are scheduled for summer 2006